Bacillus subtilis as a vegetable growth promoter inoculant in soybean

Authors

DOI:

https://doi.org/10.48017/dj.v7i1.2071

Keywords:

phosphate solubilization, indole acetic acid, biomass, Glycine max L. Merrill.

Abstract

The use of Bacillus subtilis as an inoculant can promote plant growth through several mechanisms. Thus, the objective of this work was to evaluate the efficiency of Bacillus subtilis as a soybean plant growth promoter inoculant. Seven isolates of B. subtilis (Bs01; Bs02; Bs03; Bs04; Bs05; Bs06 and Bs10) were evaluated for their ability to solubilize phosphate and synthesis of indole acetic acid, in vitro, and in the production of biomass of soybean plants in vegetation House. All isolates were able to solubilize phosphate and produce indole acetic acid (IAA). For the evaluated characteristic of shoot and root biomass, the treatment with inoculation of the Bs10 strain was superior (p<0.05) to the others, in the first evaluation at 30 days after sowing (DAS) and at 52 DAS the treatments with the inoculations with strains Bs05, Bs06 and Bs10 were significantly higher (p<0.05). The B. subtilis strains showed efficiency in the variables analyzed in relation to the control without inoculation. The efficiency of the use of B. subtilis in plant growth is related to the biological characteristics of this microorganism, which expresses facilities for maintaining its viability in bioformulates and, therefore, its potential to promote plant growth.

Metrics

Metrics Loading ...

Author Biographies

Gaspar Moreira, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia Agrícola

Celso Afonso Lima Lima, Universidade Federal do Tocantins

Agronomia

Albert Lennon Lima Martins, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia Agrícola

Manuella, Universidade Federal do Tocantins

Engenharia de Bioprocesso e Biotecnologia; Microbiologia 

Lillian França, Universidade Federal do Tocantins

Agronomia; Produção Vegetal; Microbiologia Agrícola

References

ABHIJITH, Ramya et al. Occurrence of Phosphate-Solubilizing Bacteria in Rhizospheric and Pneumatophoric sediment of Avicennia marina. International Journal of Fisheries and Aquatic Studies, v. 5, n. 4, p. 284-288, 2017.

ABREU, C. S. et al. Maize endophytic bacteria as mineral phosphate solubilizers. Genetics and Molecular Research, v. 16, n. 1, p. 1-13, 2017.

AHMAD, Maqshoof et al. Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ, v. 6, 2018.

ARAUJO, Fábio Fernandes de; GUERREIRO, Renato Tadeu. Bioprospection of Bacillus isolates promoters of corn growth in natural and sterile soil. Ciência e Agrotecnologia, Lavras, v. 34, n. 4, p. 837-844, Jul-Aug. 2010.

ARAUJO, Fábio.Fernando de et al. Controle genético, químico e biológico de meloidoginose na cultura da soja. Pesquisa Agropecuária Tropical, Goiânia-GO, v. 42, n. 2, p. 52-60, 2012.

BRAGA JUNIOR, Gaspar Moreira et al. Efficiency of inoculation by Bacillus subtilis on soybean biomass and productivity. Revista Brasileira de Ciências Agrárias, v.13 n.4, e5571.

BRAGA JUNIOR, Gaspar Moreira. Bioprospecção e eficiência de Bacillus subtilis como promotor de crescimento vegetal na cultura da soja. 2019. Tese de Doutorado, Universidade Federal do Tocantins, Gurupi, TO, Brasil.

CERQUEIRA, Wilza Fagundes et al. Influência de bactérias do gênero Bacillus sobre o crescimento de feijão comum (Phaseolus vulgaris L.). Enciclopédia Biosfera, v.11, n. 20, 2015.

CHAUHAN, Anjali et al. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurini bacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotion al effect. Brazilian Journal of Microbiology, v. 48, n. 2, p. 294-304, 2017.

CLEMENTE, Junia Maria et al. Use of Bacillus spp. as growth promoter in carrot crop. African Journal of Agricultural Research, v. 11, n. 35, p. 3355-3359, 2016.

CONTRERAS-CORNEJO, Hexon Angel et al. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, Oxford, v.92, p.1-17, 2016.

DIAZ, Paola Andrea Escobar et al. Bacillus spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Australian Journal of Crop Science v.13, n.12, p. 2003-2014, 2019.

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. (2011). Manual de métodos de análise de solo. 230p, 2011 Rio de Janeiro, RJ: Embrapa-CNPS.

GUIMARÃES, Vandeir Francisco et al. Eficiência de inoculante contendo Bacillus megaterium (B119) e Bacillus subitilis (B2084) para a cultura do milho, associado à fertilização fosfatada. Research, Society and Development, v. 10, n. 4, p: 1-28, 2021.

HARA, Francisco Adilson dos Santos; OLIVEIRA, Luiz Antônio de. Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos e álicos de Presidente Figueiredo, Amazonas. Acta Amazônica, v. 34, n. 3, p. 343-357, 2004.

JAIN, Shekhar et al. Isolation and characterization of plant growth promoting bacteria from soybean rhizosphere and their effect on soybean plant growth promotion. Int. J. Advanc. Sci. Tec. Res., v. 5, p. 397-410, 2016.

JAMES, T. S . et al. (Ed.) Bergey’s Manual of Systematic Bacteriology, 721 p. New York: Springer, 2005.

KALAM, Sadaf et al. Functional and molecular characterization of plant growth promoting Bacillus isolates from tomato rhizosphere. Heliyon, v. 6, e04734, 2020.

KAVAMURA, Vanessa Nessner et al. Screening of Brazilian cacti rhizobacetria for plant growth promotion under drought. Microbiol. Res., v. 168, n. 4, p. 183–191, 2013.

KUMARI, Sonali et al. Optimization of Indole-3-Acetic Acid Production by Diazotrophic B. subtilis DR2 (KP455653), Isolated from Rhizosphere of Eragrostis cynosuroides. International Journal of Pharma Medicine and Biological Sciences, v. 7, n. 2, p. 20-25, 2018.

KUNDAN, Rishi et al.., Pant, G., Jadon, N., & Agrawal, P. K. Plant growth promoting rhizobacteria: mechanism and current prospective. Journal of Fertilizers and Pesticides, v.6, n.2, p. 1-9, 2015.

LEONCIO, Mariane da Rosa; BOTELHO, Gloria Regina. Isolation and characterization of plant growth promoting bacteria isolated from garlic (allium sativum). Scientia agraria, v. 18, n. 3, p. 95-106, 2017.

MACHADO, Daniele Franco Martins; PARZIANELLO, Francini Requia; SILVA, Antonio Carlos Ferreira da; ANTONIOLLI, Zaida Inês Antoniolli2. Trichoderma no Brazil: O Fungo e Bioagente. Revista de Ciências Agrárias, v. 35, n. 1, p. 274-288, 2012.

MARDANOVA, Ayslu Mirkacimovna et al. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agricultural Sciences, v. 8, p. 1-20, 2017.

MENDES, Gilberto de Oliveira et al. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Annals of Microbiology, v. 64, n. 1, p. 239-249, 2014.

MILANI, Rafael de Mello. Diversidade de bactérias epífitas e endofíticas da cultura do milho. 2017. 44f. Dissertação de mestrado. Faculdade de Ciências Agrárias e Veterinárias – Unesp, Jaboticabal.

MOHAMED, Eman A. H. et al. Phosphate Solubilization by Bacillus subtilis and Serratia marcescens Isolated from Tomato Plant Rhizosphere. Journal of Environmental Protection, v. 9, n. 03, p. 266-277, 2018.

MURPHY, J.; RILEY, J. P. A modified single solution method for determination of phosphate in natural waters. Analytical Chemistry Acta, Amsterdam, v. 27, p. 31-36, 1962.

PEEL, Murray C et al. Update world map of the Köppen-Geiger climate classification. Hydrology and Earth System Science, v. 11, p. 1633-1644, 2007.

PÉREZ-MONTAÑO, F. et al. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiological Research, v. 169, n. 5-6, p. 325-336, 2014.

RABINOVITCH, Leon; OLIVEIRA, Edmar Junior. Coletânea de procedimentos técnicos e metodologias empregadas para o estudo de Bacillus e gêneros esporulados aeróbios correlatos. Rio de Janeiro: Montenegro Comunicação, 160 p. 2015.

REETHA, S. et al. Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa. L). International Journal of Microbiological Research, v. 3, n. 2, p. 568-574, 2014.

REZENDE, Cássia Cristina et al, Physiological and agronomic characteristics of the common bean as affected by multifunctional microorganisms. Cemina: Ciências Agrárias, v. 42, n. 2, p. 599-618, 2021.

RIBEIRO, Vitória Palhares et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian Journal of Microbiology, v. 49, n. 1, p. 40-46, 2018.

SAHARAN, B. S.; NEHRA, V. Plant Growth Promoting Rhizobacteria: A critical review. Life Sci. Med. Res., v. 21, p. 1-30, 2011.

SANTOS, Alan Francisco et al. Biometria e estado nutricional da cultura da aveia branca (Avena sativa L.) sob inoculação com Bacillus subtilis e B. megaterium. Research, Society and Development, v. 10, n. 5, e53410515270, 2021.

SARAVANAKUMAR, Kandasamy et al. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. Cucumerinum. Biological Control, v. 94, p. 37-46, 2016.

SICUIA, Oana et al. Phytohormone–like producing Bacillus increase tomato seedlings quality. Scientific Bulletin. Series F. Biotechnologies, v. 20, n. 1, p. 83-88, 2016.

SHAFI, Jamil et al. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology & Biotechnological Equipment, Abingdon, v. 1, n. 1, p. 446-459, 2017.

SLEPECKY Ralph A.; HEMPHILL Hemphill Eenest. The genus Bacillus – nonmedical. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K. (eds): The Prokaryotes. A Handbook of the Biology of Bacteria. Springer Science + Business Media, New York: p. 530–555, 2006.

SOUZA, Klismann Alberto; BITTENCOURT, Geraldo Moreira. Avaliação do crescimento das exportações brasileiras de soja em grão. Revista de Política Agrícola, v. 28, n. 4, p. 48, 2020.

STAMFORD, N. P.; NAHAS, E. Microrganismos solubilizadores de minerais. In: FIGUEIREDO, M. V. B.; BURITY, H. A.; OLIVEIRA, J. P.; SANTOS, C. E. R. S.; STAMFORD, N. P. (Ed.). Biotecnologia aplicada à agricultura. Brasília, DF: Embrapa Informação Tecnológica; Recife, PE: Instituto Agronômico de Pernambuco (IPA), 2010. p. 561-581.

TAIZ, Lincoln et al. Fisiologia e desenvolvimento vegetal. Porto Alegre: 6. ed. Artmed, 888p, 2017.

ZEILINGER, Susanne et al. Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews, v. 30, n.2, p. 74-90, 2016.

ZHONG, Chuan-qing et al. Dissolving mechanism of strain P17 on insoluble phosphorus of yellow-brown soil. Brazilian Journal of Microbiology, v. 45, n. 3, p. 937–943, 2014.

ZOHORA, Umme Salma et al. Biocontrol of Rhizoctonia solani K1 by Iturin a producer Bacillus subtilis RB14 seed treatment in tomato plants. Advances in Microbiology, v. 6, p. 424-431, 2016.

Published

2022-01-01

How to Cite

Chagas Junior, A. F., Gaspar Moreira, Lima, C. A. L., Albert Lennon, Manuella, & Lillian França. (2022). Bacillus subtilis as a vegetable growth promoter inoculant in soybean. Diversitas Journal, 7(1), 0001–0016. https://doi.org/10.48017/dj.v7i1.2071